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The probabilistic formula derived via the rigorous method of the joint

probability distribution function to estimate protein phases in the single-

wavelength anomalous diffraction (SAD) case [Giacovazzo & Siliqi (2001). Acta

Cryst. A57, 40±46] has been revised. A simple but equally effective formula is

provided, allowing an easy interpretation of the role of the structural parameters

accessible via a diffraction experiment. In particular, the formula is able to

simultaneously combine the contribution arising from the anomalous differ-

ences with a Sim-like contribution, and also to take the errors into account.

1. Notation

N: number of atoms in the unit cell.

a: number of anomalous scatterers in the unit cell.

na = N ÿ a: number of non-anomalous scatterers in the unit

cell.

Z: atomic number.

fj � f 0
j ��fj � if 00j � f 0j � if 00j : scattering factor of the jth atom

(thermal factor included).

F�a � jF�a j exp�i'�a � �
P

a fj exp�2�ih � rj�:
Fÿa � jFÿa j exp�i'ÿa � �

P
a fj exp�ÿ2�ih � rj�:

F� � jF�j exp�i'�� � Fh � F�a � F�na � ��.

Fÿ � jFÿj exp�i'ÿ� � Fÿh � Fÿa � Fÿna � �ÿ.

�� and �ÿ represent the cumulative errors arising from

different sources (i.e. the structural model constituted by the

located anomalous scatterers and errors in measurements).

jFj exp�i'�: structure factor calculated by taking into account

non-anomalous scattering (all the atoms in the unit cell

included).P
a ;
P

na ;
P

N �
P � f 02j � f 002j �; where the summation is

extended to a, na and N atoms.

�a, �N:
P

Z2
j , where the summation is extended to the anom-

alous scatterer substructure or to all the atoms in the unit cell.

�ano � jF�j ÿ jFÿj.
The paper by Giacovazzo & Siliqi (2001a) will be denoted

paper I.

2. Introduction

Owing to recent advances in synchrotron technology, the

MAD (multiwavelength anomalous diffraction) techniques

become more and more popular as a tool for solving protein

structures. In recent years, SAD (single-wavelength anom-

alous diffraction) techniques have started to play a major role,

particularly when the data collection is very accurate (e.g. high

redundancy of measures). As soon as the anomalous scatterers

are located (Weeks & Miller, 1999; Terwilliger & Berendzen,

1999; Grosse-Kunstleve & Brunger, 1999; Burla et al., 2002;

Schneider & Sheldrick, 2002), probabilistic formulas are

applied to estimate the protein phases.

In paper I, the method of the joint probability distribution

functions has been applied to derive a probabilistic formula

for the SAD case. The ®nal distributions (I.11) and (I.13)

provided the conditional probability distributions

P�'�jR;G;E�a ;Eÿa � and P�'ÿjR;G;E�a ;Eÿa �, respectively,

where

E� � R exp�i'��;
E�a � Ra exp�i'�a �;

Eÿ � G exp�i'ÿ�;
Eÿa � Ga exp�i'ÿa �

are pseudo-normalized structure factors (i.e. normalized with

respect to the non-anomalous scatterer substructure); e.g.

E� � F�=
ÿP

na

�1=2
. The above distributions are quite general

and have been rigorously derived but suffer from some

drawbacks:

(i) the estimation of '� requires two (time-consuming)

numerical integrations: i.e. the calculation of the ratioR��
ÿ�
'�P�'�jR;G;E�a ;Eÿa � d'�

. R��
ÿ�

P�'�jR;G;E�a ;Eÿa � d'�;

(ii) the same calculations are necessary for the estimation

of 'ÿ;

(iii) the variance of the estimates (information necessary for

practical applications) requires analogous numerical integrals;

(iv) last, but not least, the complicated algebraic expressions

of (I.11) and (I.13) do not allow the reader to understand the



nature of the terms providing the phase information and their

interpretation in terms of parameters accessible via the

diffraction experiment. Thus the connexion of (I.11) and (I.13)

with other approaches described in the literature is dif®cult.

This paper aims at overcoming the above drawbacks by

deriving probabilistic conditional distributions for '� and for

'ÿ easily understandable and of immediate use.

We will focus our attention on the joint probability distri-

bution (I.8), from which (see Appendix A) the following

conditional distribution may be derived:

P�'�jR;G;E�a ;Eÿa �
� S expfÿ�2=e��Ra�Gÿ eÿR� cos�'� ÿ '�a �
�Ga�Rÿ e�G� cos�'� � 'ÿa ��g; �1�

where S is a suitable scale factor,

e� � 1� hj�
�j2iP
na

; eÿ � 1� hj�
ÿj2iP
na

; �2�

e � �e�eÿ ÿ 1� � hj�
�j2iP
na

� jhj�
ÿj2iP
na

� hj�
�j2ihj�ÿj2iP

na

ÿ �2
:

�3�
Since hj��j2i and hj�ÿj2i are usually negligible with respect toP

na, we can approximate (3) as

e � �hj��j2i � hj�ÿj2i��Pna: �4�
Accordingly, (1) reduces to

P�'�jR;G;E�a ;Eÿa �
� S expf2q�RaR cos�'� ÿ '�a � � 2qÿGaG cos�'� � 'ÿa �
� 2�RÿG��Ra cos�'� ÿ '�a � ÿGa cos�'� � 'ÿa ��=eg;

�5�
where

q� � hj�ÿj2i=�hj��j2i � hj�ÿj2i�
and

qÿ � hj��j2i=�hj��j2i � hj�ÿj2i�:
Factorizing the terms containing cos�'� ÿ '�a � and the terms

containing cos�'� � 'ÿa � gives

P�'�jR;G;E�a ;Eÿa � � �2�Io�X ��ÿ1 expfX cos�'� ÿ ���g;
�6�

where

tan �� � P=Q; �7�
P � 2�q�RRa sin '�a ÿ qÿGGa sin 'ÿa �
� 2��RÿG�=e��Ra sin '�a �Ga sin 'ÿa �;

Q � 2�q�RRa cos '�a � qÿGGa cos 'ÿa �
� 2��RÿG�=e��Ra cos '�a ÿGa cos 'ÿa �;

X � �P2 �Q2�1=2; �8�
and e is given by (4).

Let us now characterize the nature of the terms in P and Q.

Both P and Q are constituted by two contributors: the ®rst is a

Sim-like term (Sim, 1959, 1960), the second depends on the

�ano experimental measurements.

The non-Sim terms in the P and Q expressions, say

2�RÿG��Ra sin '�a �Ga sin��ÿ 'ÿa ��=e

and

2�RÿG��Ra cos'�a �Ga cos��ÿ 'ÿa ��=e;

are, in the Argand plane, nothing else but the components of

the vector

2�RÿG�fRa exp�i'�a � �G� exp�i��ÿ 'ÿa ��g=e:

Let us now denote by Eÿ�a the complex conjugate of Eÿa . Then,

E�a ÿ Eÿ�a � Ra exp�i'�a � ÿGa exp�ÿi'ÿa �
� Ra exp�i'�a � �Ga exp�i��ÿ 'ÿa ��
� 2iE00�a ;

where

iE00�a � i
P

na

ÿ �ÿ1=2 P
j

f 00j exp�2�ih � rj�

� iR00a exp�i'00�a �
� R00a exp�i�'00a � �=2��:

Accordingly, P and Q may be rewritten as

P � 2�q�RRa sin '�a ÿ qÿGGa sin 'ÿa �
� 4��RÿG�=e�R00a sin�'00�a � �=2�; �9�

Q � 2�q�RRa cos '�a � qÿGGa cos 'ÿa �
� 4��RÿG�=e�R00a cos�'00a � �=2�: �10�

For suf®ciently large proteins, the Sim contribution may be

negligible (this occurs when the scattering power of the

anomalous scatterers is negligible with respect to the total

scattering power of the protein). Then P and Q reduce to

P � 4��RÿG�=e�R00a sin�'00a � �=2�; �11�
Q � 4��RÿG�=e�R00a cos�'00a � �=2�: �12�

In such a situation,

�� � '00�a � �=2 if �RÿG�> 0,

'00�a ÿ �=2 if �RÿG�< 0

�
and

X � 4�RÿG�R00a=e: �13�
X may also be written as

X � �jF
�j ÿ jFÿj�jF 00�a j
hj��j2i � hj�ÿj2i �

�anojF 00�a j
hj��j2i � hj�ÿj2i : �14�

In the next section, we will apply (11) and (12) to a case in

which they constitute a useful approximation of (9) and (10).

However, a second application will be described for which the

partial information exploited by (11) and (12) is not suf®cient

for obtaining good phase estimates. As a conclusion, from our

tests the use of (9) and (10) is always advised.
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3. Applications

We ®rst check whether the simple formulas (9) and (10) lose

information with respect to the use of the complicated

conditional distributions (I.11) and (I.13). We apply them to

the following experimental data.

(a) JIA (Li et al., 2000), space group C2221, a = 95.90, b =

119.80, c = 165.48 AÊ , 570 residues and 8 Se atoms in the

asymmetric unit. The data correspond to the wavelength � =

0.9793 AÊ , where �f 0 ' ÿ5.6, f 00 ' 3.3.

(b) A smaller protein, CAUFD (Dauter et al., 1997), space

group P43212, a = 33.95, c = 74.82 AÊ , 94 residues. Eight Fe

atoms (per asymmetric unit) are the anomalous scatterers,

with �f 0 ' 0.26 and f 00 ' 1.25 at � = 0.88 AÊ .

The results are shown in Tables 1 and 2. The phase estimates

via (I.11) and (I.13) are obtained by calculating the centroids

of the distributions and the corresponding variances (via the

®gure of merit w = m, see paper I). The estimates via (9) and

(10) are ordered according to w � D1�X� � I1�X�=I0�X�,
where Ii is the modi®ed Bessel function of order i. The ef®-

ciencies of the old and the new formulations are nearly

equivalent. The correlation factors (CORR) between the

electron-density maps calculated via the estimated phases and

the published re®ned maps are the following:

(i) for JIA, CORR = 0.49 if (I.11) and (I.13) are used, 0.48 if

the estimates are provided by (9) and (10);

(ii) for CAUFD, CORR = 0.66 both for (I.11) and (I.13) and

for (9) and (10).

Let us now check if the ef®ciency of (11) and (12) is

comparable with that shown by formulas (9) and (10). For JIA,

the phase error (and the CORR value) does not change if (11)

and (12) replace (9) and (10).

Apply now (11) and (12) and (9) and (10) to CAUFD (see

Table 2). The necessity of using the full equations (9) and (10)

is evident from comparison of the phase errors. The value of

CORR is 0.66 when (9) and (10) are used, but is only 0.29 if

the estimates are provided by (11) and (12). The role of the

Sim component is therefore central for CAUFD, while it is

negligible for JIA. This different feature is due to the different

scattering powers of the anomalous scatterers in the two

structures: indeed, �a=�N = 0.05 for JIA, �a=�N = 0.15 for

CAUFD.

The phases obtained via (9) and (10) were submitted to an

automatic solvent-¯attening procedure (Giacovazzo & Siliqi,

1997): the resulting values of CORR were 0.83 for JIA and

0.84 for CAUFD.

We have also applied the widely used program MLPHARE

from CCP4 (Collaborative Computational Project Number 4,

1994) to the experimental data of JIA and CAUFD. While for

JIA the value of CORR is smaller but comparable with that

obtained by (9) and (10) (0.47 against 0.49), the situation is

much worse for CAUFD, for which CORR = 0.32. The lower

ef®ciency of MLPHARE is because such a program is unable

(as most of the current packages) to simultaneously use the

SIM contribution.

4. Conclusions

A simpli®ed probabilistic formula has been obtained that

provides a simple tool for assigning phases in the SAD case,

allows an easy interpretation of the phase distribution in terms

of parameters accessible via the diffraction experiment, and

eliminates the necessity of calculating the centroid of the

phase distribution and the variance of the estimate via

numerical methods. The new formula contains two contrib-

utors: a Sim-like term and a term arising from the measured

anomalous differences. The ®rst term is not straightforwardly

used in the usual SAD procedures, but its potential role was

not ignored in the literature. To give an example, let us

consider the basic algebraic equation on which traditional

SAD techniques are based:

' � '00 ��'; �15�
where

�' � cosÿ1��ano=2jF 00j�:
In the Bijvoet±Ramachandran±Raman method (Ramachan-

dran & Raman, 1956; Raman, 1959; Moncrief & Lipscomb,

1966), the ambiguity on the phase estimate provided by (15) is

solved a posteriori via the additional use of the Sim contri-

bution, provided the anomalous scatterers have a non-negli-

gible in¯uence. The approach has been used by Hendrickson

Table 1
JIA experimental data: cumulative average phase error (�'�) for the
estimates provided by equations (I.11) and (I.13) and (9) and (10) (the
weighted phase error is in parentheses); NREF is the number of phase
estimates with reliability factor larger than w.

w NREF (I.11)±(I.13) �'� (9)±(10) �'�

0.1 26142 59 (53) 60 (52)
0.2 23104 56 (52) 57 (51)
0.3 20569 54 (51) 53 (50)
0.4 18424 52 (50) 51 (48)
0.5 16464 50 (49) 48 (46)
0.6 14619 49 (48) 45 (44)
0.7 12677 47 (47) 43 (42)
0.8 10114 46 (46) 40 (40)
0.9 6277 44 (44) 38 (38)

Table 2
CAUFD experimental data: cumulative average phase error (�'�) for
the estimates provided by equations (I.11) and (I.13), (9) and (10) and
(11) and (12) (the weighted phase error is in parentheses); NREF is the
number of phase estimates with reliability factor larger than w.

w NREF (I.11)±(I.13) �'� (9)±(10) �'� (11)±(12) �'�

0.1 20556 45 (37) 45 (33) 62 (57)
0.2 14640 40 (35) 32 (28) 56 (53)
0.3 10135 35 (33) 27 (26) 52 (50)
0.4 6943 32 (30) 24 (23) 49 (48)
0.5 4530 28 (28) 22 (22) 47 (46)
0.6 2789 26 (26) 21 (21) 45 (45)
0.7 1479 25 (25) 21 (21) 42 (42)
0.8 496 24 (24) 22 (22) 39 (39)
0.9 84 25 (25) 33 (33) 39 (39)



& Teeter (1981) to solve the crystal structure of crambin at

1.5 AÊ resolution. Our probabilistic equations (9) and (10) ®rst

state the most rigorous way of simultaneously combining the

contribution arising from the anomalous differences with the

Sim contribution, also taking the errors into account. The

superior ef®ciency of the formulas has been checked by

application to experimental data.

APPENDIX A

If all the anomalous atoms have been located, equation (I.8)

may be written as follows:

P�R;G; '�; 'ÿjE�a ;Eÿa �
� �RG=��2e�eÿc��

� exp

�
ÿ 1

c

�
R2 � R2

a ÿ 2RRa cos�'� ÿ '�a �
e�

�G2 �G2
a ÿ 2GGa cos�'ÿ ÿ 'ÿa �

eÿ

�
� 2c3

c

1

�e�eÿ�1=2
�RG cos�'� � 'ÿ� � RaGa cos�'�a � 'ÿa �

ÿ RGa cos�'� � 'ÿa � ÿ RaG cos�'ÿ � '�a ��
�
; �16�

where

c2 � �1ÿ �c2
1 � c2

2��2; c1 � c01�e�eÿ�ÿ1=2;

c2 � c02�e�eÿ�ÿ1=2; c2
3 � c2

1 � c2
2;

c01 �
P

na�f 02j ÿ f 002j �
.P

na�f 02j � f 002j �;

c02 � 2
P

na f 0j f 00j
ÿ �.P

na�f 02j � f 002j �:
Let us now introduce in (16) the approximation '� ' ÿ'ÿ, as

suggested for the two-wavelength case by Giacovazzo & Siliqi

(2001b). We obtain

P�R;G; '�jE�a ;Eÿa � � 2�P�R;G; '�;ÿ'�jE�a ;Eÿa �:

Then,

P�'�jR;G;E�a ;Eÿa �

� P�R;G; '�jE�a ;Eÿa �
. R��
ÿ�

P�R;G; '�jE�a ;Eÿa � d'�

may be calculated, which coincides with equation (1).

The authors thank the referees for their very useful

suggestions.
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